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Cross-stream migration in dilute solutions of rigid polymers undergoing rectilinear flow
near a wall
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Kinetic theory is used to investigate cross-stream migration of a rigid polymer undergoing rectilinear flow in
the vicinity of a wall. Hydrodynamic interactions between the polymers and the boundary result in a cross-
stream migration. In simple shear flow, polymers migrate away from the wall, creating a depletion layer in the
vicinity of the wall which thickens as the flow strength increases relative to the Brownian force. In pressure-
driven flow, an off-center maximum in the center-of-mass distribution occurs due to a competition between
hydrodynamic interactions with the wall and the anisotropic diffusivity induced by the inhomogeneous flow

field.
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Flexible polymers in dilute solution migrate across
streamlines in simple shear and pressure-driven flows.
Though the origin and direction of the migration were con-
troversial [1], recent work [2-5] has clarified that flexible
polymers primarily migrate away from bounding walls due
to a hydrodynamic lift force. The local shear flow extends
the polymer, generating tension in the chain and an addi-
tional flow field around the polymer. The flow field becomes
asymmetric near a no-slip boundary and results in a net drift
away from the wall for both simple shear and pressure-
driven flow. In inhomogeneous flows, the variation in the
local shear rate alters the position-dependent conformation
and consequent diffusivity transverse to the flow. This addi-
tional mechanism results in a weak displacement of the poly-
mers away from the centerline in pressure-driven flow,
though the net migration still occurs away from the wall
unless hydrodynamic interactions with the wall are screened,
as occurs for highly confined polymers.

The mechanism and direction of migration remain unclear
for rigid polymers in dilute solution. Measurements on semi-
rigid xanthan molecules in pressure-driven flow indicate mi-
gration away from the wall, resulting in a depletion layer [6].
When considering only steric interactions with the walls,
simulations of a rigid dumbbell predicted a limited increase
of the depletion layer at sufficiently high shear [7]. However,
mechanisms based on the anisotropic diffusivity predict a net
migration of rigid polymers toward the wall in pressure-
driven flow [8,9], similar to the mechanism for flexible poly-
mers. Most recently, simulations of rigid polymers in
pressure-driven flow predicted migration away from the wall
[10], though the depletion layer is larger than predicted by
steric interactions alone. The authors proposed that a subtle
combination of orientation effects and hydrodynamic inter-
actions with the walls produces the overall migration.

We develop a kinetic theory for the migration of a dilute
solution of rigid polymers undergoing rectilinear flows and
include hydrodynamic interactions with the bounding walls
to confirm the results of Ref. [10] and clarify the origins of
the observed migration. The theory contains approximations
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similar to those made for flexible polymers [2]: the polymer
distribution function is factorized into a product of a center-
of-mass and orientation distribution and a far-field approxi-
mation for the hydrodynamic interaction with the bounding
wall is made. We first derive and present results for a rigid
polymer undergoing simple shear flow near a single wall and
show that rigid polymers migrate away from the wall due to
hydrodynamic interactions with the wall. The theory is ex-
tended to pressure-driven flow between two bounding walls;
in this case, we observe an off-center maximum in the
center-of-mass distribution due to a competition between hy-
drodynamic interactions with the wall and the anisotropic
diffusivity induced by the inhomogeneous flow field.

The evolution of a rigid polymer in solution (see Fig. 1) is
governed by a continuity equation for the distribution func-
tion, W(r,,p,1), of the center-of-mass, r,, and orientation, p,

v
=V ) -V (), (1)

The probability distribution function is separated into a
center-of-mass, n, and orientation distribution function ¢,

W(r.,p.t) =n(r.0)yr.,p.1), (2)

where n(r,,1)=V(r.,p,1)dp. Integrating Eq. (1) over p and
solving for the steady result gives
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FIG. 1. A rigid polymer of length L and aspect ratio A sus-
pended in a shear flow of strength 3. The coordinate s describes
positions along the polymer axis, and a no-slip boundary is located
at y=0.
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V- (& ))=V-T=0, (3)

where angular brackets (---) indicate an ensemble average
over orientation, (r.)=Jt.idp, and J is the polymer flux.

Solving Eq. (3) for the center-of-mass distribution re-
quires the averaged center-of-mass velocity. In the absence
of inertia and for a Newtonian suspending liquid, the veloc-
ity is determined by a balance between Brownian and hydro-
dynamic forces, where the hydrodynamic forces are approxi-
mated here by slender body theory [11]. At leading order, the
center-of-mass velocity ¥, is related to the fluid velocity u(s)
and the Brownian force F acting on the polymer by

1 (L2
fc=—f u(s)ds + &' (I+pp) - F, 4)
L) 1
. . . . In(24) . .
where I is the identity matrix, flzm, and u is the fluid

viscosity. The Brownian force F is the integrated force dis-
tribution [ E/Lz,zf(s)ds. The fluid velocity includes contribu-
tions from the imposed shear flow 7y and the disturbance
velocity generated by the force on the polymer which is re-
flected by the wall,

L2

u(s) = r,+sp,e, + f G(s,s") - f(s")ds’, (5)

=L2

where G(s,s’) is the Green’s function for a planar wall with
the Oseen tensor removed [12]. The coordinate s’ indicates
the location of a point force on the polymer, whereas s is the
point of evaluation of the reflected disturbance in velocity.

We linearize the force distribution using Legendre poly-
nomials [13,14] and retain only the first two terms,

1 12
)= F+ L_3S[TX p+Spl, (6)

where the Brownian torque Z=["?,spXf(s)ds and the
stresslet is given by

L/2

o £

- sp - u(s)ds. (7)
2L) 1

We also linearize G(s,s’) about the center of the polymer
under the assumption that the polymer is far from the wall
(ry>L) [2]. Combining Egs. (5) and (6), substituting the
resulting expression for u(s) into Eq. (4), and eliminating the
stresslet using Eq. (7) gives the center-of-mass velocity

f.=yre + Ir)U+ M -F+N-(Txp), (8)

where )\(ry)zm(ﬁ). The vectors and tensors appearing
in Eq. (8) are )

u=pxpy[(1 _pypy)ey_zpypl (9)

M=¢"'T+pp), (10)
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FIG. 2. Transverse velocity 7, as a function of polymer orienta-
tion 0=cos‘1[px/(\e’pf+}7§)], with p,=0. The inset shows the direc-
tional dependence on the polymer angle.

3 1
= @(r—}z)[py(l +e.e,) —e,p+pe,]. (11)

Only the self-mobility has been retained for M ; additional
terms resulting from interactions with the wall negligibly
impact the final results.

The stresslet term within Eq. (6) couples the shear flow to
a transverse motion. In this sense, the stresslet for the rigid
polymer is analogous to the spring force in the theory for a
flexible polymer; the inability of the rigid polymer to stretch
or compress along its major axis generates an additional flow
field within the fluid. This flow field is reflected by the wall
and creates a transverse motion of the polymer. This contri-
bution to the polymer motion appears in the second term of
Eq. (8). Extracting the transverse component of the velocity
resulting from the shear flow gives

Fy= ) (papy) (1= 3p,py), (12)

which matches previous results given without derivation
[10]. Figure 2 shows 7,/ ¥\ as a function of orientation with
respect to the wall for a polymer in the plane of shear
(p.=0). For a force and torque-free polymer rotating in shear
flow, Eq. (12) suggests that the center-of-mass will oscillate
perpendicular to the wall [15,16]. The symmetry of the ori-
entation distribution must be broken to produce a net veloc-
ity either away or towards the wall [16]. In the case of a rigid
polymer, even very weak Brownian fluctuations break the
symmetry.

To connect the orientation distribution with the polymer
flux, Eq. (8) is ensemble averaged and multiplied by n to
give

T =nyre.+ny\(r){U) + n{M - [- kT V (In ¥)])
+n(N - [= kgTV,(In ¥) X p]), (13)

where kT is the thermal energy and the Brownian forces and
torques have been written in terms of the distribution
function—i.e., F=—kzTV(InW¥) and T=-kzTV,(In¥).
Simplification of the third term in Eq. (13) gives
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M - [-kgTV (InV)]) = - kzT{(M)-Vn
—nkgTV -(M). (14)
The fourth term in Eq. (13) becomes
(N - [ kgTV,(In ¥) X p])

—I’lkBT)\(V )<§§2>(<2pyp+pypyey>_ey)' (15)

Unlike the elastic dumbbell [2], the fourth term in Eq. (13) is
nonzero, revealing an additional contribution to the migra-
tion of rigid polymers related to the Brownian torque. For
fully developed flows and under the condition that the flux of
the center-of-mass of the particles normal to the wall be zero,
Eq. (3) becomes

d
—p,py)
dlnn  Nr) dy T
P —LL[Pea+7ZB]——1+< oy (16)

y

where the Péclet number is Pe— . The contribution from

the imposed shear flow due to 1nclud1ng the stresslet is re-
lated to «a,

_ ((pxpy>_ 3<pxpypypv>>’ (17)

1+{p,p,)

and the contribution arising from the Brownian torque is
related to S,

1+{p,p,)

The last term in Eq. (16) corresponds to the contribution
arising from the anisotropic diffusivity of a rigid polymer.

For a slender body in simple shear flow with Brownian
torque, the orientation distribution at steady state is governed
by

Vor=Pe,V,-[p,(e,- p.p)¥]. (19)

where Pe,=Pe/12. We have assumed that rotation is not in-
fluenced by hydrodynamic or steric interactions with the
wall. Also, a separation of the center-of-mass and rotational
motions is implicit in Eq. (19), which assumes that the ori-
entation distribution equilibrates much faster than the poly-
mer migrates [2,8].

Equation (19) is solved numerically [17]; the resulting
contributions of Pea and 72 to the center-of-mass distribu-
tion function are plotted in Fig. 3. The value of 728 ap-
proaches a limiting value of 72, whereas Pea increases in-
definitely. Since the orientation moments are independent of
position for simple shear flow, @ and B are constants depend-
ing only on Pe and %(pyp}) is zero. Integrating Eq. (16)

gives
L{Pea+T728
”(r)_ex”{ (128 1n(2A)>] (20)

for a distribution which approaches a bulk value of 1 as y
goes to infinity. Figure 4 shows that a net migration away
from the wall exists at large Péclet numbers. The large deple-
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FIG. 3. Contribution of the shear flow (Pea) and Brownian
torque (728) to the migration of a rigid polymer in simple shear
flow plotted as a function of Pe,.

tion layer can exceed that predicted for rigid polymers at
high Péclet numbers which interact with the bounding wall
only through excluded volume [7]. The results in Fig. 4 are
for A=10; polymers with higher aspect ratios will undergo a
weaker migration as evident from the logarithmic depen-
dence on A in Eq. (20).

For simple shear flow, the differences in anisotropic dif-
fusivity were ignored under the assumption that fy(pypy)=0;
differences in diffusivity can influence the migration only
weakly through steric effects near the wall. However, differ-
ences in diffusivity become important as a result of the in-
homogeneous field in pressure-driven flow since (p,p,) be-
comes a function of position. To calculate the center-of-mass
distribution of rigid polymers in pressure-driven flow, the
effect from the two bounding walls is 1ncluded by superpo—

sition [2]. Consequently, \(r,) becomes 175 n@ A)< !

(H—ry)2 ’
where H is the height of the channel. Equation (16) is inte-
grated numerically, with the orientation moments calculated

from Eq. (19) at each position according to the local shear
rate y(r,)= Bgrpe(l 2;1) where Pe is the Péclet number cor-

responding to the mean shear rate.
Figure 5 shows the results of the calculations for A=10.
Near the center of the channel, where the shear rate is small,
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FIG. 4. Center-of-mass distribution for a rigid polymer with

A=10 in simple shear flow.
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FIG. 5. Center-of-mass distribution for a rigid polymer with
A=10 in pressure-driven flow. The height of the channel is 8L and
ny=[ndr,.

the contribution due to the anisotropic diffusivity results in a
weak migration of polymers toward the wall. Specifically,
(pyp,) decreases from a value of 1/3 at the center of the
channel and approaches zero near the wall. As a result, the
migration is balanced by the hydrodynamic interactions of
polymers with the boundaries to give an off-center maximum
for n(r,). The effect of the anisotropic diffusivity becomes
increasingly important relative to the wall interactions for
polymers with larger aspect ratios. Consequently, the maxi-
mum value of n(r,) will move towards the wall as A in-
creases.

The theoretical results for pressure-driven flow are similar
to those from simulations which include hydrodynamic inter-
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actions with the wall [10]. When neglecting both steric and
hydrodynamic interactions with the wall, however, a migra-
tion of polymers toward the wall is predicted for arbitrary
values of Pe [8]. Similarly, under conditions of highly con-
fined polymers coupled with weak pressure-driven flow,
models which include steric wall effects [9] predict migra-
tion towards the wall. In these cases, the migration occurs
solely because of the anisotropic diffusivity of the polymer
as a result of the inhomogeneous flow field. Such a mecha-
nism predicts no migration in simple shear flow where the
orientation distribution is spatially uniform, contrary to our
results. Furthermore, the qualitative difference in predicted
migration in pressure-driven flow highlights the importance
of including long-range hydrodynamic interactions.

To summarize, a kinetic theory has been developed for the
migration of rigid polymers in rectilinear flows. Results from
our theory are similar to results from theories describing
flexible polymer systems which consider hydrodynamic in-
teractions with the wall, despite differences in flexibility. For
simple shear flow near a single wall, results indicate that
hydrodynamic interactions with the wall cause a net cross-
stream migration of polymers away from the wall. Results
for pressure-driven flow, which include contributions from
the anisotropic diffusivity of polymers, show an off-center
maximum for the center-of-mass distribution. Though the
theory presents general trends, improvements to the quanti-
tative prediction can be made. For example, steric effects [9]
as well as improvements to the wall interactions [18] can be
included.
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